
Journal of Statistical Physics, Vol. 62, Nos. 1/2, 1991 

Statistics of Transfer Matrices for Disordered 
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In the quantum transport problem of a tight-binding Anderson model, the 
statistics of eigenvalues for the transfer matrices of thin disordered slabs is 
studied. Numerical simulations indicate that the probability distribution of 
nearest neighbor eigenvalue spacing and the A3 statistics have already become 
close to that of the Gaussian orthogonal ensemble for sample lengths of the 
order of the mean free path, provided that transverse localization effects are not 
important. An intuitive argument is given why this should occur independently 
of the size of the matrix. Therefore, good mixing of the channels is not essential 
for obtaining Gaussian orthogonal ensemble type statistics and universal 
conductance fluctuations. 
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1, I N T R O D U C T I O N  

There  has been a recent theore t ica l  and  exper imenta l  interest  in conduc-  
tance f luctuat ions  in no rma l  metal l ic  samples. ~1 9) In par t icular ,  the stat ist i-  
cal var iance  va r (g )  of  the conduc tance  g of a set of metal l ic  samples,  all 
with the same macroscop ic  proper t ies ,  is independen t  of the size of  the 
samples  and of  their  average conduc tance  in the metal l ic  regime, 

va r (g )  ~ eZ/h (1) 

This result  has been ob ta ined  by pe r t u rba t i on  calculat ions  in microscopic  
theories,~2,3) numer ica l  s imulat ions ,  ~2,9) and  macroscop ic  theories.  ~5,8) These 

macroscop ic  theories  are  based  on the fact tha t  the transfer  matr ices  
that  de te rmine  the conductance ,  p rov ided  a mul t ichanne l  L a n d a u e r  
fo rmula  ~1~12) is valid,  have spectral  p roper t ies  ana logous  to the famous  
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random matrix ensembles introduced by Wigner and Dyson, (~3'14) the 
Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble 
(GUE). The symmetries of the transfer matrices are current conservation 
and, in the absence of a magnetic field, time reversal. However, in these 
macroscopic theories, one assumes that the matrices are as random 
as possible, given the symmetries. This is called a maximum entropy 
hypothesis. (6,15) 

In this paper, we study two-dimensional disordered slabs, whose 
lengths are not much larger than their widths, and the maximum entropy 
hypothesis is not valid. We argue that a continuous transition from 
Poisson-type statistics to GOE-type statistics should occur as the length of 
the sample increases. This feature should be independent of the width of the 
sample if transverse localization effects are not important. For lengths 
larger than a few mean free paths, the statistics has already become GOE 
type, in agreement with previous numerical simulations of the Anderson 
model on squares and long slabs. (7'9) 

2. M E T H O D  

We consider the usual tight-binding Anderson model for a disordered 
strip of width N and length n sandwiched between two perfect conducting 
leads, 

H= ~ ~i,j li, j ) ( i ,  jt + Vi, j,i,,f li, j)( i~i ' t  (2) 
i,j,i',J' 

where (i, j )  denotes the site of abscissa i and ordinate j. The summation in 
Eq. (2) runs over all the sites (i,j) and ( i ' , j ' ) ;  thus, 1 <~i<~n, l<~i'<~n, 
I<<.j<~N, and 1 <~j'<~N. The ei.j are random site energies chosen inde- 
pendently in the interval [ - W / 2 ,  W/2]. The hopping elements Vg.j,<i, are 
equal to 1 if (i, j )  and (i', j ' )  are nearest neighbors and zero otherwise. We 
assume a two-probe measurement with phase breaking processes outside 
the disordered strip. (16'17) We suppose that we are not in the ballistic 
regime, g ~ N (n is supposed to be larger than the mean free path l). 

A simplified multichannel Landauer formula (12) is assumed to be valid. 
The conductance g is given by 

g = 2 T r  TT,  + ( T T , ) _ I +  2 (3) 

where T is the 2Nx 2N transfer matrix of the slab. The transfer matrix is 
defined by 

(0', I ')= T(I, O) (4) 
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where (/, O) are the incoming  and  the ou tgo ing  fluxes on the left of the 
sample  [-(O', I ' )  are the ana logous  fluxes on the r ight  of the sample] .  We 
write (1s'19) T as 

T = P ~  1 FI MiPo (5) 
i = 1  

where P1 and  P0 are the matr ices  which project  the wave funct ion on the 
left and  on the r ight  of the d i sordered  slab, respectively,  on to  the p ropaga -  
t ion modes  of the leads. Mi  is the usual  2 N x  2N transfer  mat r ix  for the 

wave funct ion 

E -  e~,l - 1  0 . . . . . .  

- - 1  E - -  si, 2 - 1  0 "'" 

0 - 1  E - - e l ,  3 - ]  . . .  

m i 

. . . . . .  

- 4  

- -  I E - -  si, N 

(6) 

where 13 is the N x N ident i ty  matrix�9 The effect of the coupl ing to the leads 
has been s tudied in detai l  in ref. 20. W e  focus on the proper t ies  of the 

transfer  ma t r ix  of the slab, Y - =  I:] Mi.  F r o m  now on, we shall refer to 
i = 1  

n as the number  of i terat ions.  We find it convenient  to write Y as 
3 -  = Q 1 j / { Q ,  with 

Q= 

1 0 0 0 0 . . . . . . . . . . . .  0 0 0 0 0 . . . . . . . . . .  

0 0 0 0 0 . . . . . . . . . . . .  1 0 0 0 0 . . . . . . . . . .  

0 1 0 0 0 . . . . . . . . . . . .  0 0 0 0 0 . . . . . . . . . .  

0 0 0 0 0 . . . . . . . . . . . .  0 1 0 0 0 . . . . . . . . . .  

0 0 1 0 0 . . . . . . . . . . . .  0 0 0 0 0 . . . . . . . . . .  

0 0 0 0 0 . . . . . . . . . . . .  0 0 1 0 0 . . . . . . . . . .  

. . . . . . . . . . . . . . . .  1 0 . . . . . . . . . . . . . . . .  0 0 

. . . . . . . . . . . . . . . .  0 0 . . . . . . . . . . . . . . . .  1 0 

. . . . . . . . . . . . . . . .  0 1 . . . . . . . . . . . . . . . .  0 0 

. . . . . . . . . . . . . . . .  0 0 . . . . . . . . . . . . . . . .  0 1 

(7) 

is a symplect ic  real  mat r ix  with 2n nonzero  codiagonals .  
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So far we have been concerned with a particular microscopic model. 
Macroscopic theories have been developed for properties of filled transfer 
matrices which are as random as possible (given the symmetries). (6 8,15) 
However, they apply if two conditions are met, (1) good mixing of the 
channels, and (2) not being in a localized regime. 

In our case, we want to keep the last condition but get rid of the first 
hypothesis only. We therefore want to have the following conditions: 

(a) n~ ~ld(N)~--Nl, where ~ld(N) is the one-dimensional localiza- 
tion length for a strip of width N. 

(b) N,~ ~la(n)-~ nl. 
(c) n ~ ~2d, where ~2a is the two-dimensional localization length. 

(d) N ~  ~2a. 

(plus the condition that we are not in the ballistic regime l~n). 
Since the matrices Jg are symplectic real, as a result of current conser- 

vation and time reversal, the eigenvalues of jCZjdt are real, positive and go 
by pairs. If 2 is an eigenvalue, 1/2 is also an eigenvalue. The spectral 
properties are characterized by the joint probability distribution of eigen- 
values lower than 1. We focused on two quantities commonly studied in 
the statistics of spectra, the probability of nearest neighbor eigenvalue 
spacing P(s) and the A3 statistics, A3(~). (13'14) 

Before describing our simulations, we give an intuitive argument why 
P(s) and A 3 for our transfer matrices should be practically GOE type, as 
soon as the number of nonzero codiagonals becomes larger than a certain 
number, independent of the size of the matrix, provided that localization 
effects are not important. 

The band transfer matrices that we have bear some analogies with an 
ensemble studied in ref. 21, which considers the matrices whose elements 
Bi.j are given by 

 , exp[ ] 
where Ci, j are drawn according to the GOE ensemble, and ~c and o- are two 
real parameters. For this ensemble, they found that the probability of 
nearest neighbor eigenvalue spacing and the A 3 statistics were independent 
of the size of the matrix (provided that ~c is larger than 1), and observed 
a continuous transition from a close-to-Poisson statistics for small ~r to a 
close-to-GOE statistics for large o-. 

In our case, we have a sharp cutoff; the elements of JC/J//* that lie 
further than 4n from the diagonal are zero. The symmetry of our ~ j / , t  
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matrices is symplecticity instead of orthogonality. The major difference 
with ref. 21 is that our matrices have to be symplectic, whereas the matrices 
of ref. 21 are not strictly orthogonal. Thus, in our case, one should expect 
more spectral rigidity than in ref. 21. 

3. S I M U L A T I O N S  A N D  R E S U L T S  

We did our simulations on the usual Anderson model. We studied the 
probability of nearest neighbor eigenvalue spacing P(s) and the A3 
statistics. In order to minimize localization effects, we work in the middle 
of the band E =  0 and at weak disorder ( W =  0.8). Roundoff errors can 
become a serious problem for large matrices. After diagonalization of TT t, 
one checks that the eigenvalues go by pairs (2, 1/2). Since the extreme 
eigenvalues can differ by several orders of magnitude, it is best to con- 
sider ~1s'~9~ c~i = (1/2L) Log )~i, where 2i is the ith eigenvalue larger than 1. 
Then, one performs the usual unfolding procedure ~22) on the ~i themselves. 

Figures l a - l d  show P(s) versus s for E = 0 ,  W=0.8 ,  N = 5 0 ,  and 
n = 5, 10, 25, 40, respectively. Averages have been taken over 2000 samples, 
except for n = 40, where averages are over 200 samples. We also measured 
(c~),  where the brackets mean the average over all samples. The slope 
~?(~i)/t?(i/N) gives an idea ~19) of the inverse of the mean free path /. The 
value of I was found to lie around 10. It is seen that already for n -- 5, the 
distribution is very close to the G O E  result. 

Figures 2a-2d show A3(•) versus 5~ for the same samples as in 
Figs. 1. Apart  from the values at n = 5, the results are not far from the 
analytical result for the GOE,  although there are some deviations. 

Thus, for a number  of iterations greater than some value ni, the 
statistics remains close to GOE,  for N =  50 channels. We want to know 
how ni varies as the number of channels increases. From the analogy with 
the situation of ref. 21 one would expect that n~ does not vary with N. 

Figures 3a-3d show P(s) versus s for n = 10 and N =  10, 25, 100, and 
200, respectively. Except for the N = 200 curve, the results are close to the 
GOE. For  the A3, shown on Figs. 4 a ~ d ,  there are significant deviations 
from the G O E  at N =  100 and N =  200. These deviations are presumably 
due to transverse localization effects, since the localization length for a 
quasi-one-dimensional strip with ten channels, ~d(10),  is only 220. Data  
for P(s) and zl 3 for N =  50 are displayed in Figs. lb and 2b, respectively. 
The right parameter  in the model seems to be the number of nonzero 
codiagonals of the matrix ./g, which was 2n in our case. Had we taken an 
Anderson model with next nearest neighbor couplings (with 4n nonzero 
codiagonals in J//), then the convergence toward G O E  statistics would 
have been faster as the number of iterations was increased. 
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Fig. 1. Probability of nearest neighbor eigenvalue spacing P(s) versus s for the rescaled 
spectrum of eigenvalues of the matrix y-y-t ,  where ~- is the transfer matrix defined in the 
text. The values of the parameters are E = 0 ,  W=0.8, width N =  50, and length (a) n =  5, 
(b) n =  10, (c) n=25 ,  (d) n=40 .  Averages have been taken over 2000 samples, except for 
n = 40, where averages are over 200 samples. The solid line is the analytic GOE formula. 
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F i g .  1. (Continued) 
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Fig. 2. A 3 stat is t ics  ~3(s ~ versus 2~', where ~ is the average number  of e igenvalues  in the 
sequence. For  par ts  (a ) - (d) ,  the values of the pa ramete r s  are the same as in Figs. l a - l d .  The 

solid line is the analy t ic  G O E  formula.  
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Fig. 3. Same as in Fig. 1, except  tha t  now the length is fixed to n =  10 and  the width is 
(a) N = 1 0 ,  (b) N = 2 5 ,  (c) N =  100, (d) N = 2 0 0 .  
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Fig. 4. A3 statistics, A3(~ ~ versus ~ ,  for the same values of the parameters as in Fig. 3. 
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In  summary,  we have argued that, for disordered thin slabs, in the 

metallic regime, good mixing of the channels is not  impor tan t  in order to 
get GOE- type  statistics. Numerica l  s imulat ions of the Anderson model 

show that already for ten iterations, i.e., for lengths of the order of the 

mean  free path, the probabi l i ty  dis t r ibut ion of nearest neighbor  eigenvalue 
spacing is very close to the GOE,  apparent ly  irrespective of the size of the 
matrix. For  the A 3 statistics, there seems to be a slight dependence on the 

size of the matrix, bu t  this is p robably  caused by transverse localization 
effects. We thus expect to have universal conductance fluctuations even if 

the channels are not  well mixed. 
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